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An exact solution to the Schrodinger equation corresponding to the problem of a particle falling under
gravitational acceleration and bouncing on a harmonically oscillating surface is derived. Stationary
phase approximations to the transition amplitudes from an initial state to eigenfunctions of the problem

with a fixed surface are worked out and illustrated.

PACS number(s): 03.40.Kf, 03.65.—w

I. INTRODUCTION

We consider the following version of the Fermi-Ulam
cosmic ray acceleration problem. A particle falls under
gravitational acceleration g and bounces off a surface that
is oscillating with frequency w, x,(t)=hy(1+coswt). It
is known that particle trajectories accelerate indefinitely
[1] and that they exhibit technical chaos [2].

Less well known is the fact that the quantum mechani-
cal formulation of the above problem is mathematically
identical to a problem in underwater acoustics. This is
the problem of acoustic propagation under the influence
of a restoring velocity profile with a periodic reflecting
wall in the “parabolic approximation” to the full wave
equation [3]. Here the ‘“‘time” variable of the quantum
problem is replaced by the “range,” or distance in the
direction of propagation. The wall is static but varies
with range. Thus solutions to the wave equation are in-
teresting both from the point of view of quantum systems
which exhibit chaos in the classical limit [4], and for un-
derwater acoustics in situations where the rays are chaot-
ic.

The purpose of this paper is to supply an analytic solu-
tion to the wave equation

i3, 0=—13!0+gz0=H,P , (1
subject to the boundary condition
d(z=x,(1),1)=0. (2)

Those eigenstates of H, for which the spatial wave func-
tions vanish at z=0 are well known to be Airy functions,
and the eigenvalues are quantized. It is the boundary
condition (2) that renders the problem nonseparable and
nontrivial, although an implicit solution is possible in
terms of an integral equation [5].

The mathematical problem of solving Eq. (1) subject to
Eq. (2) is sufficiently difficult that a frontal assault on the
problem is not the most efficient way to proceed. In Sec.
II, an operator representation of Eq. (1) will be intro-
duced. Then a solution motivated by the structure of the
Hamiltonian path integral representation will be postu-
lated. In Sec. I1I, subtle questions regarding the suitabili-
ty of the operator representation will be addressed, result-
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ing in verification of the solution in Sec. IV.

The solution so obtained is a superposition of the Airy
functions mentioned above, with modal projection ampli-
tudes as coefficients. Thus it is necessary to compute the
latter in order to exhibit the spatial wave functions. The
calculations are not trivial. Section V contains a discus-
sion of a stationary phase estimate of these amplitudes;
full details of the derivation of the approximation are
reserved for the Appendix.

II. HEURISTIC SOLUTION
OF THE DYNAMICAL EQUATION

Step 1 is to change variables to x =z —x (¢ ). After the
replacement ¢(x,t)=®(x,t) exp[(ighy)(t +sinwt /w)] we
obtain

id,0=—132¢+gxd—if ()3, ¢ (3)

subject to ¢(x =0,1)=0, and with f(¢)=hywsinw?. This
form seems well suited for ordinary Dirac time-
dependent perturbation theory, which proceeds through
the introduction of time-dependent coefficients through
the representation ¢(x,1)=3,6,(x)e *n la,,(t ). Here
the (15,,6_115"r are eigensolutions to Eq. (3) with f(z)=0.
However [6], a nonperturbative solution will be sought,
and we dispense with the @, (¢) notation in what follows.

We denote the inner product in the coordinate repre-
sentation fg’dx A*(x)B(x)=(A,B), so that ¢(x,1)
=3,6,(x)d,,¢4). For the remainder of this section, we
will be concerned with the projections (¢,,¢), which are
functions of 7. From Eq. (3), it is easily seen that these
satisfy

i9,(¢,,0)=E, (,,d)—if(t),,0,) . 4

To motivate the proposed form of the solution to Eq.
(4), we rewrite Eq. (3) abstractly as

id,1¢(1))=[1p*+gx +f(t)plo(2))
=[H,+1t)Ppllg()) . (5)
Now, because [ﬁo,ﬁ]=igT, for this special problem the

usual machinery of building a Hamiltonian path integral
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solution [7] to Eq. (5) can be short circuited through re-
peated use of the Baker-Campbell-Haussdorf identity
edeB=¢A1Bo(4.8172 yalid when [ 4,B] is a ¢ number.
It should be reasonably clear that this procedure will lead
to

iA

l¢(t))=e"i5(’)e—' o'e—ih(t)ﬁ|¢(0)) , (6)
where h(t)= [ldt'f(¢'), while £() remains to be deter-
mined [8].

Thus we aim for a solution of the form
($nnd)=e 50" [ “dx g, (xWolx —h(t) . ()

In passing from Eq. (6) to Eq. (7), we have used
(¢,18,=(8,|E,, ($,,6)={(d,16(1)), ¥o(x)=(x|4(0))
=¢(x,0); and we have used the property that p generates
translations, {x|e “#("P|$(0)) =W (x —h(t)).

We now verify this solution heuristically and obtain in
the process an explicit expression for &(t). Since
O, Yolx —h(1))=—f(1)9,¥y(x —h(t)), it follows that

i3,(dy,0)=(3,E+E, N$,,8)—if (t)e "6l En!
X [ 7dx ()8, o(x —h(2)) .

The second term on the right-hand side (RHS) may be
rewritten as f(t)e—ig("(({)nIe_lﬁotﬁ‘e—ih(')ﬁ|¢(0)). Under
the assumption that the commutation relation
[e_lA"',ﬁ]=gte_' ** holds (following from [H,p]
=ig1), Eq. (4) collapses to

3,£(,1¢)=—gtf(1)(¢,ld) ,

so we conclude that £(¢)=—g f ’dt't’f(t’).

Equation (7) is the principal result of this paper. It is
equivalent to solving Eq. (1) subject to Eq. (2). We turn
to proving that Eq. (7) is a correct solution, although the
commutation relations we used are more subtle than it
seems at first sight. Thus we will not recover Eq. (7) until
the end of the calculation.

III. RESTRICTION OF THE PROBLEM
TO THE HALF-SPACE

A. Remarks on why caution is required in a half-space

Care has been exercised to deem the preceding deriva-
tions “heuristic” because the conventional manipulations
that have been exhibited are open to question when the
problem is formulated in a half-space. Following von
Neumann [9], one way to exhibit the complications intro-
duced by restriction to a half-space is to examine simple
Fourier transforms.

Consider an admissible function
= f ® .dk /(k)e™, with the inverse transform

fi(x)

=L *® —ikx
Lk) 21rf_wdxf(x)e )

Now constrain f(x) to vanish for negative x,
f(x)—f(x)0(x), and insert into the formula for the in-
verse:
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LU= [ 7 dxotxre ™ [ 7 dic g (ke
Consistency requires

A r- —itk =KX =§(f — k'
s J 7 dxbix)e ( ),

which is false. Consequently, the transform of the re-
stricted function is different from the transform of the
original function unless f(x) ‘“happens” to vanish for
negative x without the intervention of 9(x ).

This unremarkable and seemingly innocuous observa-
tion presages worse things to come. Formalize by intro-
ducing eigenstates of the momentum operator |k ) and
of the position operator |x ), and assume that these are
orthonormal and complete (with 8§ function normaliza-
tion). Now sandwich the commutation relation [X,p ]=i
between momentum eigenstates:

(k|[Z,p1lk"Y=(k'—k)KkIR|k')=i8(k—k') .

A consistent solution to this equation as a distribution in
k space is (k|%|k’')=id,8(k —k'). [An additional con-
tribution proportional to 8(k —k’) is not precluded but
can be shown to be trivial for all manipulations which
follow, i.e., the coefficient is safely set equal to 0.]

Next, to compute the transition coefficients {x |k ) we
use the assumed completeness of the |k ) states to write

x{xlk)= [ di’(x|k" )k ]k)=—id,(xIk) .

It follows (with the standard normalization) that
(x|k)=(1/V2m)e™. If we now apply completeness of
the coordinate eigenstates restricted to the half-space,

(klky=[" dx 0(x){k|x ){x|k"),

it is clear that (k|k') =8(k —k') fails.

One way of summarizing this result is that the hy-
pothesis that there exist complete orthonormal eigen-
states of both the position and momentum operators is
inconsistent with the canonical commutation relation be-
tween X and P, when the |x ) are restricted to support
functions on the half-space. In Sec. III B, this formal
statement is elaborated through the example of the free
particle.

B. The free particle in a half-space

Consider the operator equation %ﬁ2|n Y=E,|n). As-
sume the existence of momentum eigenstates, and so ob-
tain the equation 1k*(k|n)=E,(k|n). Assume further
that these states are complete and orthonormal, and so
introduce a separate basis,

)= [ dklico)(klx)= [ dkli)—=e ™. ®

27

It is readily verified that, with the specified choice of the
basis coefficients { k|x ), the |x ) are indeed eigenstates of
the position .operator. It is also true that
(x'|x)=8(x —x'). However, we have seen that it may
not be assumed that the |x ) are complete.

Introduce now the notation
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U, =(xlny =2 [ dke*(kin) |

Clearly, #,(x) is meant to represent the ordinary
configuration space wave function, and for the problem
at hand it must vanish at the origin. This leads to the
condition {k|n)+{—k|n)=0, so up to an overall nor-
malization, ¥, (x) < [ *dk sinkx(k|n ). From the equa-
tion satisfied by the {k|n ), it follows at once that the or-
dinary free particle equation, —13%¢,(x)=E,¢,(x)
satisfied. The coefficients (k|n) themselves may con-
sistently be chosen to be proportional to
[0k —n)—6(k+n)].

So, starting from the operator equation, we have suc-
cessfully constructed an ordinary function of x that
satisfies the differential equation and the boundary condi-
tion. Although no explicit condition that ¥, (x ) vanishes
for x <0 has been introduced, one many proceed to nor-
malize the wave functions, integrating over the non-
negative half-space without changing the form we have
derived.

However, consider next the operator statement
[p%,p]=0. Under the stated assumptions this may be

elaborated in the form

J7 akCnlpi) klplm) = [ ak(nlplk) (klp2im ).

Under the further assumption that % is Hermitian, this

reads

E,[” dk(nlk)k{kim)=E, [* dk{nlk)k{k|m) .

E"f,m dx l/’m(x)alﬁ,,(x)=fjc dx ¥,,(x)3[ —13%,

= [ dxdy,(x)1d%,
=Emf7 dx ¥, (x)d

since ¥, (x ) also satisfies the differential equation.

The term proportional to ¥ does not vanish in the limit
V— . Textbook calculations reveal that (neglecting
normalization factors, which in any case cancel from
both sides of the equation) ¥,(0)—C,/V'V and
¥,(00——C,V2. Thus Vi, (004, (0)— 14, (0)¢),(0), in
complete accord with Eq. (9). This verifies that the expli-
cit introduction of the “excluding” potential V6(—x),
V — o0, is mathematically as well as physically equivalent
to restriction to the half-space. It also indicates that Eq.
(9) makes sense physically.

But then what is the source of the ““paradox” regarding
the commutation relation [p2,]? Note that no V term
was present in that discussion. It must be viewed as a
consequence of our inability to use “completeness” of the
coordinate representation p’p7 [ Pdx p?|x ){x|p, and
so forth, in establishing the equivalence of Eq. (9) with
the commutation relation in question. Stated differently,
the coordinate space representative of p* is not self-
adjoint in the half-space when this differential operator

GO+ V [ 7 dx t,, (x)[ —8(x ),

Inserting the aforementioned expression for {k|m ), we
obtain 0=0.

Now suppose we proceed differently. Take one deriva-
tive on the left and right sides of the differential equation
—13%,(x)=E, ¥, (x); multiply by ¢,,(x); and integrate
over non-negative x. Keep careful track of the surface
terms in two integrations by parts to obtain

(E,, —E, )¢, ¥,)=14,(00¢,(0) . 9)

With the conventional notation (xin ):wn(x) and
(x[ply)=id,8(x—y), this true equation (it can be
checked usmg explicit expressions) would appear to con-
tradict the statement [p?,p ]50. From a physicist’s point
of view, the question arises whether this apparent con-
tradiction constitutes a deep inconsistency in the quan-
tum mechanical formulation of the problem, or merely an
inconvenience that can be resolved through a more care-
ful specification of the coordinate representation.

We opt for the latter interpretation. First, to disentan-
gle the physics, note that the formal statement
fﬁz;n )=E,|n) is an incomplete depiction of the prob-
lem of a free particle in a half-space. One way to improve
the formulation is to introduce a potential V(X ), which
expels the particle from the left half-space, say V6(—x
as V approaches infinity.

With such a potential in place (at finite though very
large V'), both the |k ) states and the |x ) states are com-
plete and the formal manipulations are entirely correct.
The Hamiltonian operator is Hermitian, the kinetic ener-
gy commutes with the momentum, and the analog of Eq.
(9) reads

(x)+Vo(—x),(x)]

)+ 6(—x )91, (x)]

(x)— Vi, (0),(0) ,

acts on functions that do not vanish at the origin (such as
cosnx ). It would thus seem that a consistent prescrip-
tion, when in doubt, is to fall back on the extended Ham-
iltonian formulation, introducing V6( —
On the other hand, the half-space problem can be
represented in yet another way. Introduce the function
=¢(x)0(x), where ¢(x) is a solution to the
differential equation —13%(x)=E,¢(x), and with

¢(0)=0. Thus P(x) is the restriction of function ¢ to the
non-negative half-space. We record

(x)=6¢,(x)0(x) ,

x)=¢;,'(x)9(x)+¢;,(0)8(x) )

D) (x)=¢."(x)0(x ) +(0)8(x )+, (08 (x) .

Multiply the last line by ¢,,(x) and integrate over all x.
Making explicit use of the 6 function, the RHS (R) of
the last line becomes
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R= [ dx 4 (208" x)+,0) [ 7 dx ¢, (x)8'(x) .

Use the equation satisfied by ¢, and integrate the second
term to obtain the RHS,

R=—2E, fo‘”dx bl — ' (0)8,(0) .
But if we integrate the first term by parts twice, we obtain

R=—2E,, f0°°dx¢,,,¢; )

The surface term in the second integration by parts can-
cels the explicit ¢,,(0)¢, (0) term. Thus again Eq. (9) is
recovered.

This time the lesson is that we can first solve a full-
space problem to obtain ¢(x ), subject to ¢(0)=0. There
is no problem with the canonical commutation relations,
completeness, etc. We then restrict the solution to the
half-space via ®(x )=¢(x)6(x). For our purposes in this
paper, it is sufficient to show, as we have done, that the
surface term consistent with Eq. (9) is produced.

C. Summary of a prescription for calculations

Physically, the problem of the free particle in a half-
space may be formulated in terms of a full-space problem
subject to expulsion from the left half-space by a large
potential. When this is done, the Hamiltonian does not
commute with the momentum operator, although the
kinetic energy (of course) does.

In the limit, as the barrier height goes to infinity, the
effect of this lack of commutation manifests itself as a
surface term in evaluating the inner product (4,,,4,’),
which one would ordinarily interpret as being propor-
tional to the matrix element {(m|p®|n). However, this
identification is incorrect because, in the limit, resolution
of the identity by coordinate eigenstates |x ) is flawed.
Nonetheless, one may recover the correct surface term by
restricting the solution to the half-space through multi-
plication by 6(x ) at the end of the calculation.

Alternatively, one may dodge the issues stemming
from the problems with the states |x ) by working in the
momentum representation, recovering the coordinate
representative of the wave function at the end of the cal-
culation using Eq. (8). The resulting wave function is
then multiplied by 6(x) as before. This is the prescrip-
tion to be employed in what follows. It must be kept in
mind that the problem of constraining the particle to the
half-space is no different in the full problem than in the
case of the free particle. It is for this reason that the “re-
cipe” can be trusted: The surface term contains no physics
beyond taking the “naive” solution sin(nx), which vanishes
at the origin, and restricting it to the half-space.
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IV. VERIFICATION OF THE SOLUTION

A. Is the operator formulation equivalent
to the differential equation?

Recall that the objective is to solve Eq. (3) together
with the boundary condition. Ordinarily, passage from
the operator form Eq. (5) to the differential equation may
be accomplished using the completeness of the coordinate
eigenstates. But, as was seen in the preceding section,
this is neither legal nor necessary. For example, using
Eq. (8) and the completeness of the momentum eigen-
states,

xIp?g(e))= [ dk k> (x |k )(klg(r))
== [ 7 di(x|k)<klg(r))
=—0%x|p(2)) .

Thus, with the prescription discussed above, the
differential equation may be “recovered” from the opera-
tor equation using legal operations. Further detail is con-
tained in the following.

B. Operator representation
of the eigenvalue equation for the ¢, (x )

In Sec. I, we introduced the eigenstates of the “unper-
turbed”” Hamiltonian according to

Holg,)=(1p>+gR)l¢,)=E,|$,) . (10)

Introduce momentum eigenstates |k) and denote
(kl¢,)=¢,(k). As we have seen, the representative of
the position operator in the momentum representation is
(k|x|k')=—03,8(k—k'). It follows that

igd,¢,(k)=[E,—1k*1$,(k), (11)
which has solutions

3 E
LIy
6g g

n

d,(k)=Nexp |i (12)

Introduce ¢,(x)={x|¢, ) through the intermediary of
the @, (k ):

3 E
L2y
6g g

n

e (13)

i

&, (x )=./\/f_°0 dk exp

[A factor 1/V'2m has been absorbed into the normaliza-
tion constant N in passing from Eq. (12) to Eq. (13).]
Equation (13) is a standard representation for the Airy
function, which satisfies the equation

E,$,(x)=[—182 +gx 14, (x) . (14)

In addition, the condition that
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3 En
k__k
6g g

:0,

$,(0)=0=— fowdk cos

the well-known condition that quantizes the eigenvalues
E,. One can say equally well that the ¢, (k) “satisfy the
boundary condition” provided the eigenvalues E, take
the required values. Absolutely no unconventional steps
have been employed.
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C. Projection of the solution
of the full problem onto the |, )

Our aim is now to solve the projection of Eq. (5) onto
the states |¢, ). Explicitly,

i3,{,|6())=E, (¢,ld(1))+f(1){d,Ipld(2)) . (15
The ansatz provided by Eq. (6) reads

(Bald(0))=e €0e ™ [ dk g2(k)e MOk k|g(1=0)). (16)
[In what follows, |¢(t =0)) will be denoted more succinctly as |¢(0)).] As in Sec. I, application of the time derivative
leads to

i3,(8,16)=(3,6+E,)$,I$)+f(t)e e "' [ 7 ak kg2(kie K (k|(0)) . (17

On the other hand, if we insert Eq. (6) into the rightmost member of Eq. (15), we obtain

(,plo(t))= [~ dk ¢rk)(klplotr)

=[" dk [ dk'¢3(k)e H " (klpe

fiHO{sk,>e,,'h‘[)k‘<k:|¢(0)> . (18)

We need to relate this expression to the RHS of Eq. (17). To do so, we first assume the validity of the following commu-

tation relation and then return to verify that it is true:

(klpe o'y =(kle %1k ) —gt(kle k) . 19)
Inserting Eq. (19) into Eq. (18), we find
($,IpI¢(0)) = 80" [ dk kpkre ™ Ck|6(0)) —gr(,10(1) . 20

It follows that the proposed solution is verified, provided
&(1) is that of Sec. I.

Equation (19) is an ““obvious” result if one believes that
(a) the exp of the operator is defined by its power series
expansion, and (b) the commutator (A 0-P ] has been eval-
uated correctly. We will not demonstrate these points in
general, discussing only (b) within the eigenstates of the
momentum operator. Our discussion mirrors the discus-
sion for the free particle—through use of the momentum
representation, results valid in the half-space excluding
the origin are obtained. At the end of the day, our
configuration space answer must be multiplied by 6(x ).

D. The commutator [ A, ]

We aim to evaluate {(k|[H,,p]lk’). To this end,
we develop (k|[H,,pllk')=(k’'—k){k|H,|k'). From
the remarks preceding Eq. (11), we have
(k|Holk')=igd,8(k —k')+Lk28(k—k’). On test func-
tions, (k' —k )3, 8(k —k’)=056(k —k’), so that

(k|[Hyp k") =ig{klk") , 73}

as was required in the preceding section.

A brief remark on the exponentiated Hamiltonian is in
order. Expanding the operator in a power series, we real-
ly are confronted with the commutator (k|[A,p1k").
Equation (19) is obtained by carefully “peeling” one

Pas

power of H, off at a time, inserting complete sets of

momentum eigenstates, using Eq. (21) for that term, and
then removing extraneous complete sets. If this is done in
a consistent fashion, Eq. (19) emerges without surprises.
(If one attempts a representation for A o directly, a rat’s
nest of overlapping integrals ensues.)

E. Discussion

The previous sections demonstrate that there exists a
basis within which the formal manipulation of operators,
which motivated the ‘“‘heuristic”” derivation of Sec. I, is
demonstrably correct. We found in Sec. II that in the
simplest possible case, the free particle, these same formal
manipulations may be likewise justified. They yield solu-
tions to the differential equation that satisfy the boundary
condition—but they fail to impose the requirement that
the wave function vanish in the entire left half-space.

Intuitively this is unsettling. A hard wall reverses the
sense of momentum and thus acts as an impulsive force.
Nonetheless, we saw that the physics is entirely repro-
duced in its mathematical consequences (for those matrix
elements we need) through the a posteriori restriction of
the wave function to the half-space through the introduc-
tion of 6(x ).

Thus it appears that if we solve the problem the way it
is usually posed —satisfying the equation and the bound-
ary condition—the solution that has been obtained is val-
id in the entire half-space, with an innocuous mathemati-
cal embarrassment precisely at the origin. Yet another
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way of describing the source of this embarrassment is to
say that since the first derivative is discontinuous at the
wall, the second derivative does not properly exist. We
conclude that the mathematical problem of the boundary
term is inherent in the restriction of the coordinate eigen-
states, but that it has no physical significance.

F. Solution in coordinate representation

Ultimately, one is interested in a coordinate represen-
tation of the solution. Again, the ordinary procedure
would be to insert complete sets of coordinate eigen-
states, a procedure which is not valid for the problem at
hand. Consequently, a careful construction based on val-
id operations is required. To this end our starting point

is Eq. (6). Assume that the operator e "° has an in-
verse, so that Eq. (6) may be rewritten
eiﬂotl¢(t)>=e—-i§(r)e—ih(t)ﬁ]¢(0)) i (22)
On the left-hand side (LHS) we insert a complete set of
eigenstates of the unperturbed problem and project with
(x|; on the RHS, simply project
S e (x )8, 18(8)) = THEO (x|e THP|$(0))

n

(23)

Inserting a complete set of momentum eigenstates, the
matrix element on the RHS of Eq. (23) becomes

(xle=™P|g(0)) = [ ° dk{x|k)e ™" *(k|$(0))
=Wy(x—h(t)) .

If we now multiply both sides of Eq. (23) by ¢,,(x) and
integrate over non-negative x, we obtain precisely Eq. (7)
in the form (¢,[¢(¢))=(4,,4(t)), “as though” insertion
of a complete set of coordinate eigenstates had been in-
troduced. The coordinate representation of the wave
function is then constructed through

d(x,t)=(x|p(t)) = ¢,(x)(¢,,d(1)). (24)

This method of derivation may seem somewhat circui-
tous, but it is necessary in order to avoid an invalid intro-
duction of complete sets of coordinate eigenstates. As we
will see below, the quantities (¢,,4(¢)) are nonsingular.
Thus the representation Eq. (24) assures that the full solu-
tion ¢(x,t) satisfies the boundary condition because the
¢,(x) do. But if we had opted to reintroduce the extend-
ed Hamiltonian formulation, introducing Vé(—x), we
might have been tempted to perform a certain x integra-
tion extending from — o to + 0, and so extract a singu-
lar contribution 8(x, —x,, —h(t)). [Here the x; are the
classical turning points, and we have in mind the case
that the initial state is the unperturbed eigenstate ¢,,(x ).]
Since h(t) is a continuous function, this condition would
force the eigenvalue E, =gx, off the value for which van-
ishing of the wave function ¢,(x) is assured. The pro-
cedure we have implemented avoids this possible pitfaii.
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V. APPROXIMATE EVALUATION
OF THE QUANTITIES (¢,,¢)

We have proved that
iEt

d(x,t)=e T ¢ (x)e "

xfowdx’cp,,(x')‘l’o(x’—h(t)) ,

(25)

where £(1)=—g ftdt't'f(t’) is a solution of Eq. (3) sub-
ject to the bougdary condition ¢(0,z)=0. Again,
Yo(x)=¢(x,t=0), the initial condition.

For the remainder of this paper we will examine ap-
proximations to the integral

Tnm(t)=fh:°t)dx ¢, (x)d,,(x —h(1)) . (26)

This corresponds to the initial condition that the system
is definitely in state m of the unperturbed problem
¢(x,0)=¢,,(x). The lower limit of this integral is set
equal to h(t) because the eigenfunctions to the unper-
turbed problem vanish not only at the boundary but at all
points on the negative axis. In the interest of concise pre-
sentation, all details of the development that follow are
deferred to the Appendix.
Recall the (unnormalized) representation

w k3
¢,,(x)=f_wdk exp 6—g+k(x—x,,)
where x,=E, /g is the classical turning point. Then,
T,,. is a triple integral that eventually can be expressed
as a single remaining integral (Appendix, Sec. 1):

Tnm(t)=—2*““1mfo°°—“% expl{i[m/4+x(v)]} . @7

Here, x(v)=3%?[1/24gv3—1/v—2gp™], =[x,
+x, —h(t)]/2,A=[x,—x,, —h(t)]/2, and p=A/3.
No approximations have been made to this point, al-
though 2 >0 has been assumed with a view to the semi-
classical limit.

From the form of T it is natural to attempt a stationary
phase estimate to the integral for £ >>1. The stationary
points of the phase occur at

Ui={[1i(1—p2)1/2]/4gp2}1/2 . (28)

By definition, 1> |p|, but if we further assume that p is
small, we have one root at large v and the other at
v2=(8g)~ L. Since, in principle, g can be large, some care
is needed in estimating the integral at this second root
due to the presence of Vv in the denominator of the in-
tegrand [10] (Appendix, Sec. 2). Similarly, care must be
exercised in estimating the normalization integrals (Ap-
pendix, Sec. 3). The result for large E,, is

(¢,,0,)~47V2E, , (29)
and we also record here (Appendix, Sec. 4)

E}?=~(3mg /2*?)n—1) for n=large integer . (30)
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Omitting the normalization factors, the stationary
phase estimate is

T, (t1)=~(2m/A)sin(2AV2gZ)
—(mV2/22)[sin{2(2g=%)!?}
+V2cos{4(2g3%)'?}] . (31

Three features of this expression are noteworthy. First,
T,,.(t) has the same periodicity as the surface. In addi-
tion, once the normalization has been introduced, T, ()
is a numerical function of n and m, with the “dimension-
less” parameter g'/*h,. That is, T,,,(¢) does not depend
on g and h, separately, but only on this combination (Ap-
pendix, Sec. 5). Finally, although this expression has
been derived for A << 3, it is clear that T does not decay
exponentially with A. We believe this feature will survive
a more detailed analysis of Eq. (26), and it indicates con-
sistency with the absence of Kolmogorov-Arnold-Moser
(KAM) trajectories for the classical problem [1,2]. At
present we are not sure, however, whether the periodicity
of T is a reflection of the existence of a Poincaré-Cartan
integral invariant [1].

Figures 1-3 illustrate numerical evaluations of the
normalized estimate of T,,,(¢). For the purpose of these
illustrations, we have set g=w=1 and h,=S5 in Figs. 1
and 2, corresponding to a ‘stochasticity parameter”
[1-3] 4w*hy/g =20, well into the classically chaotic re-
gion. Figure 3 corresponds to a stochasticity parameter
twice as large. Given an initial mode, the computer pro-
gram searched for a range of modes such that the param-
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Time with Labe! 400 = 1/2 Period

FIG. 1. Magnitude of the coupling (natural logarithm of the
absolute value) of the initial state mode 200 to nearby modes
over % cycle of the perturbation. The motion reverses over the
second % cycle. The dark curve and the striations are maxima.
In this and the other figures, the range is from order 1 to e ~'%.
The parameters are g=w=1 and h,=5. Due to the details of
the graphics package employed, the point where the “intense”
curve intersects the ordinate indicates the sequential label for
the initial mode. That is to say, mode 200 has a label corre-
sponding to the intersection. Mode 300 is 100 axis units above
this, etc. Similarly, the time is in units 1 to 400 with 400 corre-
sponding to 1 period.
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FIG. 2. Same as Fig. 1 with initial state mode 800. Increas-
ing the initial mode number may be viewed as effectively de-
creasing Planck’s constant in the quantal context.

eter p* remained smaller than approximately 1/16, while
parameter = >>1. In all cases, the second half-period just
reverses the evolution during the initial half-period, and
so is not displayed.

Throughout this work I have employed units 4 /27=1,
where 4 is Planck’s constant. We may, however, consider
the progression to higher values of m to correspond to
approaching the semiclassical limit. Figures 1 and 2
clearly indicate that as m increases, the structure of
T,,.(t) becomes more richly detailed. [Some of the
“filigree” in the vicinity of the maximum is due to numer-
ic or graphic artifacts. The larger scale ““peacock” struc-
tures survive enhanced computational resolution.]

We will defer to later work attempts to quantify the
observed structure and to discuss it in terms of quantal
manifestations of classical chaos. Qualitatively, however,
we offer this conjecture. For large mode numbers, the
Airy functions ¢, (x) are sharply peaked at the classical
turning point. The ‘“trajectory” of maximal values of
T,n,(t) “drags” the spatial maximum of the wave func-

Label 150

Mode 800

oo iso 20 280 800 | 350 400

Time with Label 400 = 1/2 Period

FIG. 3. Same as Fig. 1 with initial state mode 800, but

ho=10. Classically, this increases the stochasticity of the ray
trajectories.
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tion up and down with the periodicity of the wall (in its
rest frame). There are, however, a large number of weak-
er maxima that have a more complicated and intricate
time dependence, suggesting rapid spatial jumps. Noth-
ing requires that individual jumpers take short leaps, so
long as their total number follows the pattern. It is easy
to envision chaotic trajectories.

In conclusion, we reiterate that Eq. (7) is the central re-
sult of this paper, although the integral expression given
for T,,,(t) is also exact for 2 positive. Approximations
to T were described and the results were displayed graph-
ically. It is evident that the wave mechanics of the
bouncing ball develops interesting structure. The coordi-
nate representation of the solution will be employed to in-
vestigate the quantal manifestations of classical chaos
further, and the results will be reported elsewhere.

1

i

3
T,,m(t)=fhmdx f_wdk exp %E-Fk(x—x,,)

f_w dk’exp
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APPENDIX
1. Representation of T,,, as a single integral

For the moment, neglect the normalization factor NV
appearing in Eq. (13). Noting that the functions ¢,(x)
are real, insert that representation into Eq. (26) to obtain

i

k"
~—+k'(x—h(t)—x,,)
6g

The x integration can be performed directly (and we neglect ie prescriptions, as they are not necessary for what fol-

lows):
_ iexpli(k+k"h(z)]

[ 7 dx expli(k+k")x)
h(t)

(k+k’")
Let
+& g—8& x,+x, —h(t) x,—x, —h(t)
k=2 k'= = finally, A=—"—" —"
> > 2 2 , and finally, >
These changes result in
_l o do i0'3 —igS [ ® i0'82 —i8A
T,,m(t)—Ef_wTexp T4g e ! fﬂwdﬁexp —8; e '8
The & integral can be done at once, producing
172
i ro do | 87g io | _iss —ZigA2
T = =2 | =S Y io. .
wm(t) zf—oo o | —io xp 24g € exp o

In this expression, we have exercised caution regarding placement of the factor (—i)~

172" for we now introduce

w=0"" and end up with an expression involving only non-negative w. Keeping careful track of the phase,

8 12 )
8 ixw) g L [
- e"w+2f0dw

—w

8wg
iw

_ife
T,,,,,(t)-—zfo dw

The function y(w) is simply the preceding exponent ex-
pressed in terms of w =g L Finally, let v =V 2w, under
the assumption that X is positive. The integral represen-
tation Eq. (27) follows.

2. Implementation of the stationary phase estimate

We are interested in approximating the integral
K= [>(dv/V'v)e'X"), with x(v) as described above and
written out in the text after Eq. (27). The stationary
points of the phase are the solutions of ¥'(v)=0, which is
a quadratic equation in the variable v2. However, the in-
tegration has been restricted to the positive v axis, so the
stationary points of interest are just the pair indicated in

172

172

8mg piX(w)gin/4

—ixw)— & (n: °°
e X —2(21)Imf0 dw

Eq. (28), vy ={[1x£(1—p*)!"2/4gp?}'/2. As noted there,
v, is not small. That is, recall that parameter

X, =X, —h(t)
X, +x,—h(t) "’

n

The function h(t) is of order 1 for all z. In the semiclassi-
cal limit, we are interested in at least one of the classical
turning points to be located at x >>1, and so also 2 >>1.
“Small p” then means a band of neighboring large ener-
gies, and in this circumstance v, =~[2gp?] 1/2>>1.
Thus about this stationary point,



3124

1/2
2 ixtv,)

3 ” e
-, x"(vy)

— Ime'™*K (v )

_ Vwsin(2v2g p3*”?)
\/—i§p23/4 .

On the other hand, with the same approximation,
v_ =~[8g] !/2 and this can be sufficiently close to zero so
that respect for v /> in the denominator of the in-
tegrand is required. Following Ref. [10], Taylor expand
the phase but work a bit further:

dv

K(v_ )zemv’ )fowv—: expli(8gZ)Hv—v_)*].
v

Change the contour according to
ir/4

—_me
V2(8g3 )34

and introduce z =e3"/4(32g =*)!/*. This produces
~ 2 dn ot 2y
K )=C(2g) [ vy Xl /2= ]

where C is a messy complex expression.

The remaining integral can be expressed in terms of the
parabolic cylinder function D _, ,(z). For X large, use
the approximation appropriate for arg(z)=237/4,

D )z )—+~\/1—;[exp( —z2/4)+iV2exp(z?/4] .
Insert this result into the expression for K(v _ ), take the
required imaginary part, add K(v ), and insert the pre-
factors relating T to K. Equation (31) then follows.
(These steps require nothing more than arithmetic, so the
full details will not be displayed.)

(2gZ)2=(3/2°){[(n =P+ [(m — L

JORGE F. WILLEMSEN 50

3. Normalization integral

Equation (29) is most easily obtained by setting n =m,
h(t)=0, in Eq. (31). Then A—0, while Z=x,. We have

T, (t)—(,,¢,)=47 2gx, —O0(1/x,) ,

from which Eq. (29) follows for large x,,.

4. Eigenvalue condition

If f(+0)=—f(—1), [Z_dre/"=2[ dtcosf(1).
Thus through a rescaling of the integration variable, the
representation Eq. (13) may be written
¢,(x)x fwdt cos(t3—zt), where z=(6g)”3(xn—x),
and as x —0, z > 0. In this situation,

f("d: cos(t3—zt)=(mz'"2/332){J, ;5[2(z /3)*"?]
)
+J 5122730724 .

Application of an asymptotic formula for J, with large
argument leads to the condition ¢,(0)=0
=cos(ax.)/>—m/4)=0, where a=(8g)'”?/3. Equation
(30) follows. The result is identical to a WKB estimate
neglecting terms of 0(1).

5. Formula for the normalized transition amplitudes

The stationary phase estimates cited above for T, (1)
did not take the normalization of the ¢, into account. A
“normalized” version within the present notation reads
T ()=To () /V (6,0, (s b, ). To simplify the
formula for T,,(t) examine first the expression
(2g2*)12, which appears in Eq. (31). Using the asymp-
totic approximation for the eigenvalues,

yr 23 —hoa?*[1—cos(wt)]}3% .

with a=(8g)!”?/3 as before. [The function 4 (t) has been evaluated to obtain this result.] This encourages us to denote

znmiAnm}E{[(n—%)ﬂ']Z/}‘}—{_”:(m’—

1
)

Similarly, from the normalization factors, we have

)y 123 —hoa? 31 —coslwt)]} .

(X, %) A=a' A [(n =L )[(m —4m]} " Vo=al N, 10

Assemble the pieces to obtain

T

()= Q2N 0 /3)((1/A,,,)sin([3/23 218,V Z 00 ) — (V2 /43, )isin(Z,,, /2)Y 2+ V2 cos[2(Z,,, /2)*21}) .
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FIG. 1. Magnitude of the coupling (natural logarithm of the
absolute value) of the initial state mode 200 to nearby modes
over % cycle of the perturbation. The motion reverses over the
second % cycle. The dark curve and the striations are maxima.
In this and the other figures, the range is from order 1 to e ~'2.
The parameters are g=w=1 and h,=5. Due to the details of
the graphics package employed, the point where the “intense”
curve intersects the ordinate indicates the sequential label for
the initial mode. That is to say, mode 200 has a label corre-
sponding to the intersection. Mode 300 is 100 axis units above
this, etc. Similarly, the time is in units 1 to 400 with 400 corre-
sponding to § period.
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FIG. 2. Same as Fig. 1 with initial state mode 800. Increas-
ing the initial mode number may be viewed as effectively de-
creasing Planck’s constant in the quantal context.
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FIG. 3. Same as Fig. 1 with initial state mode 800, but
hy=10. Classically, this increases the stochasticity of the ray
trajectories.



